Willkommen zu XIAMEN TOB NEW ENERGY TECHNOLOGY Co., LTD..
  • Deutsch
  • Russian
  • f
  • i
  • y
  • t
  • p
battery machine and materials solution
Nachrichten

Heiße Produkte

  • Unterschiede zwischen zylindrischer Batterie, Beutelbatterie und prismatischer Batterie
    Unterschiede zwischen zylindrischer Batterie, Beutelbatterie und prismatischer Batterie May 14, 2024
    Prismatische Zelle Beutelzelle Zylindrische Zelle Das Aluminiumgehäuse ist robust Sichere und gute Lebensdauer Die Hülle aus Aluminium-Kunststoff-Folienmaterial ist anfällig für thermisches Versagen, kann jedoch nicht leicht explodieren Die Technologie des Produktionsprozesses ist ausgereift Die Batteriezellen sind in einer flexiblen Gruppe verpackt Die Einzelzelle hat eine große Kapazität Die Anzahl der Module ist gering Geringes Überwachungs- und Managementrisiko Es kommt leicht zu Blähungen und die Batteriezelle wölbt sich und verformt sich Nach längerer Nutzung sinkt die Akkulaufzeit drastisch Die Anzahl der Zellen im Gesamtpaket ist groß Überwachung und Management sind schwierig Der Verpackungs- und Herstellungsprozess ist einfach Hohe Zuverlässigkeit Die Hülle des Beutels ist schwach Der Schutz ist auf Modulebene erforderlich Die Konsistenz der Batteriezelle ist durchschnittlich Die Zelle ist konsistent Die Zelle ist konsistent Die Energiedichte ist durchschnittlich Hohe Energiedichte Das Monomer hat eine hohe Energiedichte 1. Zylindrische Batterien : Mit einer langen Entwicklungsgeschichte sind sie technologisch am ausgereiftesten. Vorteile: Ausgereifte Technologie führt zu geringeren Kosten, Stabilität und Haltbarkeit, hoher Energiedichte pro Zelle und guter Konsistenz zwischen den Zellen. Nachteile: Begrenzter Spielraum für Verbesserungen der Energiedichte, hohe Anforderungen an BMS bei Kombination in großen Mengen. Gängige 18650-Batterien werden in Lithium-Ionen-Batterien und Lithium-Eisenphosphat-Batterien unterteilt. Lithium-Ionen-Akkus haben eine Nennspannung von 3,7 V und eine Ladeabschaltspannung von 4,2 V. Lithium-Eisenphosphat-Batterien haben eine Nennspannung von 3,2 V und eine Ladeabschaltspannung von 3,6 V. Ihre Kapazität reicht normalerweise von 1200 mAh bis 3350 mAh, mit einer üblichen Kapazität von 2200 mAh bis 2600 mAh. Diese Batterien zeichnen sich durch hohe Kapazität, hohe Ausgangsspannung, gute Lade-Entlade-Zyklusleistung, stabile Ausgangsspannung, Fähigkeit zur Entladung großer Ströme, stabile elektrochemische Leistung, sichere Verwendung, einen breiten Betriebstemperaturbereich und Umweltfreundlichkeit aus. Die früheste zylindrische Lithiumbatterie, die 18650-Lithiumbatterie, wurde 1992 von der japanischen Firma SONY erfunden. Aufgrund der langen Geschichte der 18650-zylindrischen Lithiumbatterie ist ihre Marktbeliebtheit sehr hoch. Der Aufbau einer typischen zylindrischen Batterie umfasst: positive Elektrodenkappe, Sicherheitsventil, PTC-Element, Stromabschaltmechanismus, Dichtung, positive Elektrode, negative Elektrode, Separator und Gehäuse. Zylindrische Lithiumbatterien verwenden einen relativ ausgereiften Wickelprozess mit hoher Automatisierung, stabiler Produktqualität und relativ niedrigen Kosten. Es gibt auch viele Modelle, wie zum Beispiel die häufig vorkommenden Modelle 14650, 17490, 18650, 21700, 26650 usw. Am Beispiel von 18650 bezieht sich „18“ auf den Durchmesser der Batteriezelle von 18 mm, „65“ steht ...
    mehr sehen
  • Feiertagsmitteilung zum Tag der Arbeit
  • Der Grund dafür, dass die Anodenelektrode der Lithiumbatterie an der Walze klebt
    Der Grund dafür, dass die Anodenelektrode der Lithiumbatterie an der Walze klebt Apr 22, 2024
    Beim Walzen und Pressen der Anoden-Elektrodenmaterialien tritt häufig das Problem des Anhaftens an der Walze auf. Das Anhaften der Anodenelektrodenmaterialien an der Walze verschwendet nicht nur Arbeitsstunden und beeinträchtigt die Arbeitseffizienz, sondern kann auch dazu führen, dass die Elektrode unbrauchbar wird, was zu wirtschaftlichen Verlusten führt. Daher ist es für die Produktion und Herstellung von Lithiumbatterien sehr wichtig, die Gründe für das Anhaften der Anodenelektrode an der Walze zu analysieren und die Probleme zu verstehen. Forscher haben die Gründe für das Anhaften von Anodenelektrodenmaterialien an der Walze in der Praxis zusammengefasst und analysiert, wobei sie hauptsächlich acht Aspekte umfassten. Schauen wir sie uns unten an. 1. Die Oberfläche der Walzenachse des Walzwerks ist nicht richtig gereinigt. Da die Oberfläche der Rollenachse bei Nichtgebrauch mit einer Schutzschicht überzogen ist, muss sie vor dem Gebrauch gereinigt werden. Wenn die Oberfläche der Rollenachse beim Rollen der Anodenelektrodenblätter nicht sauber ist, kann es leicht zu einem Anhaften an der Rolle kommen. Einige Hersteller von Lithiumbatterien trennen und verwenden Geräte für unterschiedliche Systeme und Materialien von positiven (ölbasierten) und anodischen (wasserbasierten) Elektroden, um eine gegenseitige Verschmutzung zu vermeiden. Es gibt jedoch auch Sonderfälle, in denen sich positive und Anodenelektrodenbleche dasselbe Walzwerk teilen und sogar die Beschichtungsmaschine von beiden gemeinsam genutzt wird. Ein häufiger Austausch der positiven und Anodenelektrodenblätter kann zu Kreuzkontaminationen und einem leichten Anhaften an der Walze führen. 2. Die Anodenelektrodenblätter sind nicht vollständig getrocknet. Wenn die Ofentemperatur nicht hoch genug ist oder die Laufgeschwindigkeit während der Beschichtung zu hoch ist, erreichen die Elektrodenfolien möglicherweise nicht den Trocknungsstandard. Wenn die Platten beim Rollen noch eine gewisse Feuchtigkeit enthalten, kann das Bindemittel seine Fähigkeit, verschiedene Stoffe zu verbinden, nicht voll entfalten. Die Haftung zwischen dem Anodenelektrodengraphit, der Kupferfolie und dem Bindemittel ist schwach und es kann leicht passieren, dass die Bleche während des Verformungsprozesses beim Walzen an der Walze haften bleiben. Ein Stück Elektrodenblech kann zum Wiegen entnommen und dann für eine gewisse Zeit zum Backen in den Ofen gelegt und dann erneut gewogen werden. Anhand der Gewichtsdifferenz lässt sich feststellen, ob die Trocknung der Elektrodenbleche beim Beschichten zufriedenstellend ist. 3. Die Temperatur im Ofen ist zu hoch und die negative Elektrode ist zu trocken. Wenn die Einbrenntemperatur zu hoch ist, verdunstet das Lösungsmittel zu schnell und das Bindemittel verflüchtigt sich und haftet an der Oberfläche der Elektrode, wodurch eine Mikrostruktur der Elektrode entsteht, wobei die Bindemittelkonzentration von der Folie zur Oberfläche schrittweise ansteigt der Elektrode. Während des ...
    mehr sehen
  • Der Einfluss von Feuchtigkeit im Herstellungsprozess von Lithiumbatterien
    Der Einfluss von Feuchtigkeit im Herstellungsprozess von Lithiumbatterien Apr 10, 2024
    Während des Herstellungsprozesses von Lithium-Ionen-Batterien gibt es drei entscheidende Punkte, die streng kontrolliert werden müssen: Staub, Metallpartikel und Feuchtigkeit. Wenn Staub und Metallpartikel nicht ordnungsgemäß kontrolliert werden, führt dies direkt zu Sicherheitsunfällen wie internen Kurzschlüssen und Bränden in der Batterie. Wenn die Feuchtigkeit nicht wirksam kontrolliert wird, wird auch die Batterieleistung erheblich beeinträchtigt und es kann zu schweren Qualitätsmängeln kommen! Daher ist es wichtig, den Wassergehalt der Hauptmaterialien wie Elektroden, Separatoren und Elektrolyte während des Herstellungsprozesses streng zu kontrollieren. Es darf keine Entspannung und ständige Wachsamkeit geben! Im Folgenden finden Sie eine detaillierte Erläuterung unter drei Aspekten: der Schädigung von Lithiumbatterien durch Feuchtigkeit, der Feuchtigkeitsquelle während des Herstellungsprozesses und der Kontrolle der Feuchtigkeit während des Herstellungsprozesses. 1. Der Schaden von Feuchtigkeit für Lithiumbatterien (1) Aufquellen und Auslaufen der Batterie: Bei übermäßiger Feuchtigkeit in Lithium-Ionen-Batterien reagiert diese chemisch mit dem Lithiumsalz im Elektrolyten und erzeugt HF: H2O + LiPF6 → POF3 + LiF + 2HF Flusssäure (HF) ist eine stark ätzende Säure, die die Batterieleistung erheblich schädigen kann: HF korrodiert die Metallkomponenten, das Batteriegehäuse und die Dichtung innerhalb der Batterie, was schließlich zu Rissen, Brüchen und Undichtigkeiten führt. HF zerstört auch den SEI-Film (Solid-Electrolyte-Interface) im Inneren der Batterie, indem es mit seinen Hauptkomponenten reagiert: ROCO2Li + HF → ROCO2H + LiF Li2CO3 + 2HF → H2CO3 + 2LiF Schließlich bilden sich LiF-Ausfällungen im Inneren der Batterie, was zu irreversiblen chemischen Reaktionen in der negativen Elektrode führt, die aktive Lithiumionen verbrauchen und dadurch die Energiekapazität der Batterie verringern. Bei ausreichender Feuchtigkeit entsteht mehr Gas, wodurch der Innendruck der Batterie steigt. Dies kann zu Verformungen, Schwellungen und sogar Undichtigkeiten führen und ein Sicherheitsrisiko darstellen. Bei Mobiltelefonen oder digitalen elektronischen Produkten auf dem Markt kommt es oft zu einem Anschwellen des Akkus und einem Aufplatzen der Abdeckung, was oft auf einen hohen Feuchtigkeitsgehalt und die Gasentwicklung im Inneren des Lithium-Akkus zurückzuführen ist.   (2) Erhöhter Innenwiderstand der Batterie: Der Innenwiderstand der Batterie ist einer der kritischsten Leistungsparameter und dient als primärer Indikator für die Leichtigkeit, mit der sich Ionen und Elektronen innerhalb der Batterie bewegen können. Es wirkt sich direkt auf die Lebensdauer und den Betriebszustand der Batterie aus. Ein geringerer Innenwiderstand bedeutet, dass beim Entladen weniger Spannung verbraucht wird, was zu einer höheren Energieabgabe führt. Eine Erhöhung des Feuchtigkeitsgehalts kann zur Bildung von POF3- und LiF-Ausscheidungen auf der Oberfläche des SEI-Films (Solid-E...
    mehr sehen
  • Wie hoch ist die Seitenspannung einer Lithiumbatterie? Wie steuere ich die Seitenspannung?
    Wie hoch ist die Seitenspannung einer Lithiumbatterie? Wie steuere ich die Seitenspannung? Apr 07, 2024
    Die Seitenspannung der Batterie bezieht sich insbesondere auf die Spannung der Aluminiumschicht zwischen der Kathodenlasche und der laminierten Aluminiumfolie der Polymerbatterie. Die Seitenspannung der Polymer-Lithium-Batterie bezieht sich auf: 1. Die Spannung der Aluminiumschicht zwischen der Kathodenlasche und der laminierten Aluminiumfolie; 2. Die Spannung der Aluminiumschicht zwischen der Anodenlasche und der laminierten Aluminiumfolie. Theoretisch ist die Aluminiumschicht zwischen der Kathodenlasche und der laminierten Aluminiumfolie isoliert, was bedeutet, dass ihre Spannung 0 sein sollte. Tatsächlich kann es bei der Verarbeitung der laminierten Aluminiumfolie zu einer lokalen Beschädigung der inneren PP-Schicht kommen, was zu lokale Leitung (einschließlich elektronischer Kanäle und Ionenkanäle) zwischen ihnen, wodurch eine Mikrobatterie und damit eine Potentialdifferenz (Spannung) entsteht. Die Seitenspannungsstandards variieren von Hersteller zu Hersteller, die meisten Branchen legen sie jedoch auf unter 1,0 V fest. Der Spannungsstandard basiert auf dem Auflösungspotential der Aluminium-Lithium-Legierung Seitenspannungsprüfung: Die Seitenspannungsprüfung wird hauptsächlich verwendet, um die Dichtwirkung von Verpackungsfolien für Lithiumbatterien zu überprüfen und Kurzschlüsse zwischen der Lasche und der Aluminium-Laminatfolie der Verpackungsfolie zu erkennen. Kurzschlüsse können zu Korrosion der laminierten Aluminiumfolie, Elektrolytaustritt, Gasanschwellen, Unterspannung und einer Reihe anderer Probleme führen, die ein Sicherheitsrisiko darstellen. Die Seitenspannung von Lithium-Polymer-Batterien bezieht sich insbesondere auf die Spannung an der Aluminiumschicht zwischen der positiven Lasche und der mit Aluminium laminierten Folie einer Polymer-Lithium-Batterie. Theoretisch sollte die Aluminiumschicht zwischen dem Pluspol und der aluminiumkaschierten Folie isoliert sein, was bedeutet, dass ihre Spannung Null sein sollte. Bei der Verarbeitung der aluminiumkaschierten Folie kann es jedoch zu lokalen Schäden an der inneren PP-Schicht kommen, die zu einer teilweisen Leitung (einschließlich elektronischer und ionischer Kanäle) zwischen ihnen führt. Dadurch entsteht eine Mikrobatterie, die zu einer Potentialdifferenz (Spannung) führt. Die Seitenspannungsstandards variieren von Hersteller zu Hersteller, die Industrie legt sie jedoch im Allgemeinen auf unter 1,0 V fest. Die Grundlage für dieses Spannungsnormal ist das Auflösungspotential der Aluminium-Lithium-Legierung. Mithilfe der Potenzialdifferenz zwischen der positiven Lasche und der aluminiumkaschierten Hülle wird überprüft, ob elektronische Kanäle zwischen der negativen Lasche und der aluminiumkaschierten Folie vorhanden sind. Wenn elektronische Kanäle zwischen der negativen Lasche und der aluminiumkaschierten Folie vorhanden sind und die innere PP-Schicht der aluminiumkaschierten Folie beschädigt ist, kann es zu Korrosion kommen. Einer der Gründe für die Gasquellung: Verpackungskorrosio...
    mehr sehen
  • Der Einfluss von SBR auf die Graphitdispersion
    Der Einfluss von SBR auf die Graphitdispersion Mar 28, 2024
    Wenn in der Aufschlämmung ohne SBR nur ein geringer CMC -Gehalt vorhanden ist , agglomerieren Graphitpartikel während des Homogenisierungsprozesses und können nicht gut dispergiert werden. Wenn das Verhältnis von CMC zu Graphit moderat ist, führt die Zugabe von 1,0 % bis 4,5 % SBR zur Aufschlämmung dazu, dass SBR auf der Oberfläche des Graphits adsorbiert, die Graphitpartikel dispergiert und die Viskosität und der Modul der Aufschlämmung verringert werden. Wenn die CMC-Menge 0,7 % bis 1,0 % beträgt, weist die Aufschlämmung Viskoelastizität auf und eine kontinuierliche Zugabe von SBR verändert die rheologischen Eigenschaften der Aufschlämmung nicht. Beim Vergleich der beiden Mischmethoden, nämlich der gleichzeitigen Zugabe von SBR und CMC und der Zugabe von zuerst CMC und dann von SBR, zeigen die Ergebnisse, dass CMC eine führende Rolle bei der Dispersion von Graphit in der Aufschlämmung spielt und CMC bevorzugt auf der Oberfläche von Graphitpartikeln adsorbiert. Wenn die Menge an zugesetztem CMC sehr gering ist, adsorbiert die Zugabe von SBR im Allgemeinen auf der Oberfläche von Graphitpartikeln, was einen gewissen Einfluss auf die Dispersion von Graphit hat. Mit zunehmender Menge an zugesetztem CMC nimmt auch die Adsorptionsmenge auf der Graphitoberfläche zu, und SBR kann nicht auf der Graphitoberfläche adsorbieren und spielt daher bei der Graphitdispersion keine Rolle. Wenn eine bestimmte Menge an CMC erreicht ist, wird die kombinierte Anziehungskraft von überschüssigem CMC, das nicht auf der Oberfläche von Graphitpartikeln adsorbiert, größer als die Abstoßung, was zur Agglomeration zwischen Graphitpartikeln führen kann. Daher spielt CMC eine entscheidende Rolle bei der Dispersion der Graphit-Negativelektrodenaufschlämmung. E-Mail: tob.amy@tobmachine.com Skype: amywangbest86 WhatsApp/Telefonnummer: +86 181 2071 5609
    mehr sehen
  • Ausrüstung zum Mischen von Schlamm mit Lithium-Ionen-Batterie
    Ausrüstung zum Mischen von Schlamm mit Lithium-Ionen-Batterie Mar 19, 2024
    Doppelter Planetenmischer Derzeit ist die von Herstellern von Lithium-Ionen-Batterien am häufigsten verwendete Schlammmischausrüstung der Doppelplanetenmischer, auch bekannt als PD-Mischer. Dieser Mischer ist mit einer Mischkomponente mit niedriger Geschwindigkeit, Planet, und einer Dispergierkomponente mit hoher Geschwindigkeit, Disper, ausgestattet. Die Mischkomponente mit niedriger Drehzahl besteht aus zwei Klapprahmenrührwerken, die über ein Planetengetriebe verfügen. Da die Rührwerke rotieren und kreisen, ermöglichen sie dem Material, sich in verschiedene Richtungen zu bewegen, wodurch der gewünschte Mischeffekt innerhalb relativ kurzer Zeit erzielt wird. Die Hochgeschwindigkeits-Dispergierkomponente verfügt typischerweise über eine gezahnte Dispergierscheibe, die sich zusammen mit dem Planetenträger dreht und dabei schnell rotiert, wodurch starke Scher- und Dispergierkräfte auf das Material ausgeübt werden. Dieser Effekt ist um ein Vielfaches größer als bei herkömmlichen Mischern. Darüber hinaus kann die Dispergierkomponente je nach den spezifischen Anforderungen der Anwendung entweder mit einer einfachen oder doppelten Dispergierwelle konfiguriert werden. Mischen in einer Kugelmühle Kugelmühlen-Mischen wird auch häufig zur Herstellung von Lithium-Ionen-Batterieschlamm verwendet, was in Laboratorien im Allgemeinen häufiger vorkommt. Ähnlich wie bei auf Strömungsmechanik basierenden Mischmethoden wird die Dispersionsfähigkeit des Kugelmahlprozesses durch das Gleichgewicht der Clusterfragmentierungs- und Agglomerationsreorganisationsgeschwindigkeiten bestimmt, das mit den Eigenschaften der Pulverpartikel zusammenhängt und durch die Zugabe von Tensiden verändert werden kann. Beim Kugelmahlprozess unterliegen Pulverpartikel einer Vielzahl von Oberflächen- und Volumenveränderungen, die zu mechanischen und chemischen Umwandlungen des Materials führen können (z. B. zum Bruch von Kohlenstoffnanoröhren, Änderungen ihres Aspektverhältnisses und ihrer Struktur). Es kann zu Reaktionen zwischen Partikeln, zwischen Pulver und Dispersionsmedien (Lösungsmittel und Bindemittel) und sogar zwischen Pulver und Mahlkugeln kommen. Kollisionen zwischen Mahlkugeln und lokalen Flüssigkeitsturbulenzen mit hoher Scherung können ebenfalls zum Aufbrechen von Bindemittelmolekülen führen. Ultraschallrühren Derzeit wird Ultraschall von Menschen zum Mischen im mikroskopischen Maßstab verwendet, basierend auf dem transienten akustischen Kavitationseffekt. Dieser Effekt muss unter recht hoher Ultraschallintensität erzeugt werden, begleitet von der Bildung und dem Wachstum einer großen Anzahl von Mikrobläschen. Wenn die Blasengröße einen bestimmten kritischen Wert erreicht, steigt die Blasenwachstumsrate schnell an und platzt dann sofort, wodurch Stoßwellen entstehen, die Agglomerate zerstreuen, während lokal hohe Temperaturen und hoher Druck entstehen (der örtliche Druck kann Tausende von Atmosphären erreichen). Ein weiterer Prozess, der beim Ultraschallmischen auftritt, ist...
    mehr sehen
  • Versand einer prismatischen Zellmaschine von TOB New Energy für Laborforschung und -entwicklung
    Versand einer prismatischen Zellmaschine von TOB New Energy für Laborforschung und -entwicklung Mar 12, 2024
    TOB-DHG-9070A Ofen TOB-XFZH10 Planetenvakuummischer TOB-LB-FT02 Magnetische Enteisenungsfiltrationsmaschine TOB-SY300-2J Transferbeschichtungsmaschine TOB -NMP-1 NMP-Prozess TOB-CP500 Große Elektrodenschneidemaschine TOB-HRP300TC Hydraulisches Walzen Pressmaschine TOB-MQ400 Halbautomatische Batterie-Elektroden-Stanzmaschine TOB-S-DP300 Halbautomatische Stapelmaschine TOB-D-RY400 Heißpressmaschine TOB-YD2681A Batterie-Kurzschlusstester TOB-USW-4000W Batterielaschen-Vorschweißmaschine TOB-USW -6000 W Batterielaschenschweißmaschine TOB-JEQY20 Batterielaschenformpressmaschine TOB-RK-300 Zellzuführmaschine TOB-1LP-2000-CWS Laserversiegelungsmaschine TOB-FXBZDZYJ-2P-GB2440S Automatische Füllmaschine in einem Handschuhfach TOB-HP3560 Intern Widerstandstester TOB-NPF-5V30A-16 Unterdruck-Bildungsmaschine TOB-CT-4008-5V60A – NTFA-Batterie-Bewertungsmaschine E-Mail: tob.amy@tobmachine.com Skype:amywangbest86 WhatsApp/Telefonnummer: +86 181 2071 5609
    mehr sehen
erste Seite 1 2 3 ... 70 letzte Seite
[  insgesamt  70  Seiten]

hinterlass eine Nachricht

    Wenn Sie an unseren Produkten interessiert sind und weitere Einzelheiten erfahren möchten, hinterlassen Sie bitte hier eine Nachricht. Wir werden Ihnen so schnell wie möglich antworten.

Startseite

Produkte

Unternehmen

oben